McGill

Transforming Intelligence for the Edge:
Challenges and Opportunities in
Modeling, Optimization, and Deployment

Professor Brett H. Meyer
Electrical and Computer Engineering
McGill University

September 20, 2022

Language Models at the Edge

e Advancesin NLP - proliferation of language models
— Simple commands, a /la Alexa and Siri

— Speech recognition, transcription, and translation

— Question answering, etc

* |t can be useful to perform these tasks at the edge when

— Low-latency is a requirement
— Privacy is important
— Internet access is unreliable

[Source: Bodum]

RN
e/ EIW 22, September 20, 2022 © 2022 Brett H. Meyer 2

\“/

Are Transformers All We Need?

Computer Vision Natural Lang. Proc. Reinf. Learning [Source:

Lucas Beyer]

eeeeeeeeeeeeeeee

“If there ever was a candidate for [the future of modeling], transformers certainly

would be one.” —Delip Rao, Al Research and Strategy, September 14, 2022
R

N\ EIW "22, September 20, 2022 © 2022 Brett H. Meyer

Scarcity at the Edge

* Edge devices are resource-constrained

— Less compute, less memory

— Mobile: limited energy
* Edge devices are heterogeneous systems

— Multiprocessor CPUs, mobile GPU, sometimes NPU
* Lots of ways to optimize models

— Pipelining, partitioning, quantization, NAS, ...

— Very many options to consider!

* Spoiler alert: uneven library support makes things interesting

[x92]

MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

Anatomy of BERT Optimization and Deployment

Goal: performance and power optimization for the edge
Challenge: design space is large; model evaluation is expensive

1. ldentify target hardware
Select optimization approach and search space

Off-Chip DRAM

2
3. Take measurements to support metric estimation
4. Go! Search! Optimize!

DRAM Controller

= (

X
_g"‘ g i l E? (Coherent Interconnect
19 A A
5 g g & P
"g o N ;{1 > = v v
" o — R = g 21 o (SharedL2$ Jii(SharedI2S)
{‘°_>§— = g, % .o w18)) i i
w g — 88 2z T3 zi 5 (LisJ---(L1s Ji(Lis - (L1S)il ou|[psp| e
5 "5 § E§i°F F %% 3
o = B & B ! (Core) +++ [Core)i![Core } +++ [Core]
D; i big CPU cluster LITTLE CPU cluster
Kirin 970 SoC

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

This Talk: BERT Modeling and Optimization

* Modeling performance on CPUs

* Pipelining for parallelism on heterogeneous CPU systems
* Partitioning for parallelism on CPU-GPU systems

* Cross-cutting challenges and opportunities

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

Classifier
Encoder ﬁ _

Add & Norm

f

Feed Forward

@
#

|
Lx! [Add & Norm

b

Attention
Head

© 2022 Brett H. Meyer

Embedding

f

J
o°
B

EIW 22, September 20, 2022

Input

Fg
I_@)_l

Bidirectional Encoder Representations from Transformers

[x92]
L3
‘\',,h/'

So you want to find the optimal

 Why not just profile every model that is considered?

* Typical NAS experiments consider many, many possibilities
— E.g., 100M! (J. Xu et al., NAS-BERT, KDD 2021)

* Evaluating even 1% such a design space would take forever

\ \ \ \]

| | \ \ - -

0 5 10 15 20 29

Time cost (days)
[compile & transfer [inference [idle B repetition

Inference latency estimation is essential for model optimization

x93
vv, HEEBE EW'22, September 20, 2022 © 2022 Brett H. Meyer

Wait, why are we measuring?

* FLOPS, parameters, etc, are poor proxies for latency
— The same model executes in different time on different systems
* Past work has proposed evaluating and counting operations
— E.g., NAS-BERT and others.
* This results in high error! It can’t capture:
— Caching
— Parallelism

— Intermediate tensor allocation

And all of the above vary from architecture to architecture

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

BERTPerf: Latency Modeling for ARM big.LITTLE

* Mobile GPUs are not ubiquitous; CPU performance still matters!

 BERTPerf is a BERT latency model for CPUs to support NAS
— Predict model inference latency given BERT hyperparameters

— Goal: minimize the number of measurements necessary

 Models are grouped into bundles with variable depth L

— A and I have the least impact on latency
B
— Systematically sample L in bundle #1 g
and measure 1
— Bundles #2-4 behave similarly A
bundle #1 bundle #2 bundle #3 bundle #4
[M Abdelgawad et al SIPS,ZZ] LE({I 12} || Le {1,..;12} Le {1,..:12} Le {1,..;12}
- el

SO ¢

How many BERTs are there?

* Many options between BERT-tiny and BERT-base

— Encoder depth L ={1, 2, ... 12}

— Embedding size H = {128, 256, 384, ..., 768}

— Batch size B=1{1, 2, 4}

— Sequence length S = {64, 128, 256, 384, 512}

— Feed forward network width [= {512, 1024, 1536, 2048, 3072}

— Attention head count A=1{2, 4, ..., 12} S,
e A=H/64;1=4H; B x 1/H g
* We consider 4,200 options in total =

Surppaquryg
7
P¥oH
uopuinv
WION 22 PPV <
|
'
W
premiog pasg
'
WION 22 PPV <«
IOYIsSeD)

IR
"-k\s E@] EIW 22, September 20, 2022 © 2022 Brett H. Meyer

L is for Latencx

* BERT latency depends on it layer ih layer
enCOderdepthL 1 23 456 7 8 9 101112 12 3 4 56 7 8 9 1011 12

e The latency of encoder 1
is different from the rest

— All parameters come
from memory

e Later encoders tend to
have similar latency

— Parameters are at least
partially cached

xu.‘:(’ % EIW 22, September 20, 2022 © 2022 Brett H. Meyer 12

1
1
1
1
1
1
1
i
1
1
:
1
I

first degree polynomial
3

__ . [——

BERT depth (j)

BERT depth (j)

L is for Latencx

 Two bundle types: ith layer ith layer

1 23456 7 8 9 101112 12 3 4 5 6 7 8 9 1011 12

1
1
1
1
1
1
1
i
1
1
:
1
v

— Constant layer latency

—

— Piece-wise linear latency

e Always measure j={1, 12}

first degree polynomial
&

__ . [——

e PWL models: linear first,
constant after j., i

BERT depth (j)
BERT depth (j)

— Jewitch VAries across
bundles

— Binary search!

xu.“\-(’ % EIW 22, September 20, 2022 © 2022 Brett H. Meyer 13

Eerriments and Results

* Design space: 4,200 models

* Latency measured on Kirin 970 big and LITTLE clusters

 BERTPerf can predict all model latencies with <2% error
— This requires profiling 19% of the design space

[x92]

Fg
L8

Maximum error (%)

Operator-wise (%)

MLP (%) BERTPerf (%)

+0.5 19.3 214 30.9
+1 28.2 37.5 56.08
+1.5 40.4 48.4 83.09
+2 50.3 56.2 100
+9 94.2 100 -

+13 100 -

Observations

* If 5% latency prediction error can be tolerated, profile less
— 11% of the design space on the big cluster

e LITTLE cluster latency is easier to predict
— 2% error can be achieved with <10% of the design space

— Why? Most bundles have constant layer latency— likely due to cache size

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

15

PipeBERT: big.LITTLE Pipelining for Edge Throughput

Edge SoCs are heterogeneous; why not use all CPU cores?

Input Sentence:
My dog is 4 years old

i 12x

/ Input embedding &
positional encoding
i v l

Multi-Head
Attention

Add & norm

Feed
Forward
Add & norm /

v

Classification
Animals? Yes

®

Convert and split BERT model

®

Set input, output, and data dependency

Mapping sub-graphs

into N Relay IR subgraph between subgraphs onto different CPU
TVM Complier
My cat is cute...... My car is new...... The birds fly... CPU affinity setting
Computation Graph
4 LITTLE cores |1
N
’ High-level Flow Rewriting ‘
Subgraph 1 Subgraph 1 Subgraph 1 oo 0
Layer 1-3 Layer 1-3 Layer 1-3

' d 0]0

Tensor Operator Optimization

Relay IR Graph
net = bert("input", shape=(128,1))
w1 = bert.Variable("w1"),
w2 = bert.Variable("w2")

Output: split point

[H-Y. Chang et al., JSPS]

[x92]

L3
‘\k/,

Fg
I_@)_l

EIW 22, September 20, 2022

o

Subgraph 2
Layer 4-12

/R

J

Subgraph 2
Layer 4-12

Subgraph 2
Layer 4-12

IS
=
(5]

aac
=
&
]

[

Output: Yes

Output: No

Output: Yes

For BERT-base: ~900 ways to do this!

© 2022 Brett H. Meyer

PipeBERT for Better Throughput

* Use binary search with hardware latency feedback to split models

— Requires ~1% of the time for exhaustive search

IEFE gﬁgﬁ;ﬁs With PipeBERT PipeBERT
BERT models (Inference/s) Heterogeneous Throughput Throughput
: (Inference/s) Improvement (%)
Big LITTLE

BERT-base 0.73 0.43 1.26 72.6
ALBERT 0.67 0.38 1.04 55.2
SqueezeBERT 1.62 0.55 1.94 19.8
MobileBERT 4.98 1.9 5.94 19.3
DistillBERT 1.47 0.91 2.52 71.4
Average 48.6

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

PipeBERT for Better Energy Efficiency Trade-offs

* Least energy per inference? LITTLE cluster: up to about 30% impr

* Best energy-delay trade-off? PipeBERT: 60% impr on average

Average active power (W)

Energy efficiency

Energy-delay product (JXs)

BERT models (inference/J)
4B 4L PipeBERT| 4B 4L PipeBERT 4B 4L PipeBERT
BERT-base 4.79 1.32 5.69 0.15 0.31 0.22 8.99 7.14 3.59
ALBERT 4.75 1.44 5.67 0.14 0.25 0.19 10.58 9.97 4.96
SqueezeBERT| 5.21 1.09 5.35 0.31 0.50 0.35 1.99 3.60 1.42
MobileBERT | 5.16 0.97 4.39 0.97 1.89 1.33 0.21 0.27 0.15
DistilBERT | 4.71 1.54 5.43 0.31 0.55 0.46 2.18 2.17 0.86

W ke

Fast Heterogeneous Task Mapping for Edge Latency
* Edge SoCs are heterogeneous; why not use the CPU and GPU?

DNN Latency Model
(Based on HiKey 970)

DNN-Specific Mapping Optimizer (DNN-SMO)

Profiled Computation Time Profiled Communication Time
DNN/BERT models measured on both TVM device_copy operation profiled on
CPU and GPU of HiKey970. HiKey970.

Preprocessing
Determine potential parallelism in the graph.
Use this data to guide the GA optimization.

v

A A
Y h 4

Genetic Algorithm Optimizer

CPU Opl Op2 Op5

Graph Predictor
Inputs: DNN computation graph, PE mapping.
Outputs: operation-level latency, overall latency

GPU Op3 Op4

[M.L. Kornelsen et al., ASAP’22]
R

v JERNE £W'22 September 20, 2022

© 2022 Brett H. Meyer

For BERT-base: 2°9 ways to do this!

19

Profiling with Apache TVM

param - 0.0 - [1, 128] param - 0.0 - [30522, 512] param - 0.0 - 1, 128, 512] param - 0.0 - [1, 128, 512]
0.0 us .0 .0 0

0.0 us 0.0 us 0.0 us
wc M

tvmgen_default_fused take add add - 154.635 - [1, 128, 512]
154.635 us

bm

tvmgen_default_fused_mean - 235.61646153846078 - 1, 128, 1] 000
390.2514615384608 us :

0.000

vmgen_default_fused subtract_multiply mean - 239.4226923076946 - [1, 128, 1]
629.674 1538461554 us

l) 000

0.000 t

opencl

param - 0.0 - [§12]
0.0 us

.000 .000

tvmgen_default_fused add_power multiply multiply multiply _subtract_add - 138.6410833333315 - [1, 128, 512]

768.3152371794869 us

CPU&>GPU communication
profiled separately

0.000

param - 0.0 - [512, 512]
0.0 us

param - 0.0 - [512]
0.0 us

__nop - 15.646674999995971 - [128, 512]

783.9619121794829 us

-

2920.695245512815 us

N

tvmgen_default_fused nn_dense 2 - 2136.7333333333318 - [128, 512]

o

param - 0.0 - [512]
0.0 us

\

Predict Latency by Composing Layer/Comm Latency

opl - 100.0 - [128]
100.0 us

/359 0.000
op2 - 300.0 - [128]
405.35911 us

op4 - 250.0 - [128]

llvm opencl

8.713 0.000

350.0 us

op3 - 300.0 - [128] op5 - 100.0 - [128] 0.000
714.07204 us 505.35911 us :
w‘ lSJ 13
Validated using Inception w/ 0p6 - 500.0 - [128]
o o 1214.07204 us
ARMCL on Kirin 970: 5% error
@ EIW 22, September 20, 2022 © 2022 Brett H. Meyer

21

Exeeriments and Results

BERT Optimization - Generation vs Fitness

0.78 r—""

»

0.76
N
Q
S 0.74 -
E -H
5 0.72
2
L7
. é 0.70
fy
068 === Fully Random GA
0.66 Best PE Initialized GA
. == DNN-SMO
0 200 400 600 800 1000
Generation

\\r-‘;’ m EIW 22, September 20, 2022 © 2022 Brett H. Meyer

22

Observations

 BERT models have large sequential components (e.g., FFN)
— 10-15% improvement for BERT
— Latency improvement improves with model size

e Other models have parallelism that is more easily exploited

— 24% improvement for SqueezeBERT
— 31% improvement for Inception

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

23

So you want to find the optimal, redux

* The design space matters a lot
— How to identify a set of candidates?
— How do you sample it to build an estimator?
— How do you explore it? Algorithms matter
— Training (i.e., pre-training, fine-tuning) is time
consuming; avoid it!
* Measurement on hardware is difficult
— Profiling tools are limited
— Must isolate the energy consumed on cores

— Controlling the system for stable measurement
requires substantial effort

— Measurement is time consuming; avoid it!

58]

y-k\gﬁ EIW 22, September 20, 2022 © 2022 Brett H. Meyer 24

So you want to find the optimal, redux

* OTS models are not always available in the format you want
— ONNX? PyTorch? TVM? TFLite? TensorRT?
— Conversion is a minefield!

 BERT (c. 2018!) operations are not uniformly supported
— Apache TVM: great* for multicore CPU; poor performance for GPU
— ARMCL: requires manual development of BERT components
— TFLite: BERT not supported for Mali GPU
— Everything is broken; pick your poison!

IR
"-k\s E@] EIW 22, September 20, 2022 © 2022 Brett H. Meyer

25

So you want to find the optimal, redux

* Quantization varies by toolchain and hardware architecture

— TensorRT: INT8, FP16, FP32, but only for NVIDIA GPUs; poor accuracy
— ONNX: INTS8, FP16, FP32 for CPUs; only FP16 and FP32 for GPUs
— TVM: quantization does not improve inference latency

e Documentation? What documentation?

— Yeah, there isn’t any, for either edge devices or software toolkits

P
MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

26

Want to learn more? Check out our papers!

* M. Abdelgawad et al., BERTPerf: Inference Latency Predictor for
BERT on ARM big.LITTLE Multi-Core Processors, at SIPS’22

* H-Y. Chang et al., PipeBERT: High-throughput BERT Inference for
ARM Big.LITTLE Multi-core Processors, in press for J. Signal
Process. Syst.

* M. L. Kornelsen et al., Fast Heterogeneous Task Mapping for
Reducing Edge DNN Latency, at ASAP’22

SO ¢

Or, check out our Eosters'

* Hung-Yang Chang: NAS plus Pipeline for
High Throughput Edge Inference BERT

* Negin Firouzian: Latency and Accuracy
Predictors for Efficient BERT Hardware-aware NAS

* Murray Kornelsen: ARMCL BERT: Novel
Quantizable BERT Implementation for ARM SoCs

 Lily Li: BERT Inference Energy Predictor for
Efficient Hardware-aware NAS

e Dr.S. Hasan Mozafari

58]

MR | EIW ’22, September 20, 2022 © 2022 Brett H. Meyer

